Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmo...

متن کامل

Musical Source Separation using Generalised Non-Negative Tensor Factorisation models

A shift-invariant non-negative tensor factorisation algorithm for musical source separation is proposed which generalises previous work by allowing each source to have its own parameters rather a fixed set of parameters for all sources. This allows independent control of the number of allowable notes, number of harmonics and shifts in time for each source. This increased flexibility allows the ...

متن کامل

Non-Negative Tensor Factorisation for Sound Source Separation

An algorithm for Non-negative Tensor Factorisation is introduced which extends current matrix factorisation techniques to deal with tensors. The effectiveness of the algorithm is then demonstrated through tests on synthetic data. The algorithm is then employed as a means of performing sound source separation on two channel mixtures, and the separation capabilities of the algorithm demonstrated ...

متن کامل

Non-negative tensor factorisation of modulation spectrograms for monaural sound source separation

This paper proposes an algorithm for separating monaural audio signals by non-negative tensor factorisation of modulation spectrograms. The modulation spectrogram is able to represent redundant patterns across frequency with similar features, and the tensor factorisation is able to isolate these patterns in an unsupervised way. The method overcomes the limitation of conventional non-negative ma...

متن کامل

Nonnegative Tensor Factorization for Directional Blind Audio Source Separation

We augment the nonnegative matrix factorization method for audio source separation with cues about directionality of sound propagation. This improves separation quality greatly and removes the need for training data, but doubles the computation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2008

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2008/872425